

ENVIRONMENTAL IMPACT OF GEOTEXTILES

Literature study – Chapter 6: Erosion control applications.

The report "Environmental Impact of Geotextiles – Chapter 6: Erosion control applications" was written by Prof. Philippe Delmas of SINTEF Community (Norway), at the request of the European Association of Geosynthetic Product Manufacturers (EAGM).

The report is part of SINTEF's broader research series "Environmental Impact of Geotextiles and Geotextile-related Products" and complements Chapter 1: Global Overview by addressing erosion control applications such as coastal protection, riverbanks, canals, and waterways.

An **Advisory Group** guided the work, consisting of:

- 3 EAGM members (Anne-Laure Backes, Henning Ehrenberg, Fabrizia Trovato);
- 3 independent experts (Laetitia van Schoors, University Gustave Eiffel; Laurent Briançon, INSA Lyon; Philippe Delmas, SINTEF).

The chapter synthesizes results from **84 scientific publications (2020–2024)**, evaluating both **environmental and economic impacts** of geotextile applications in hydraulic and erosion-control structures

1. Sustainability and Environmental Performance

1.1 Contribution to the UN Sustainable Development Goals

Geotextiles contribute directly or indirectly to several **UN Sustainable Development Goals (SDGs)**, notably:

- SDG 6 (Clean Water and Sanitation) enabling cleaner waterways and improved filtration;
- SDG 9 (Industry, Innovation, and Infrastructure) and SDG 11 (Sustainable
 Cities and Communities) through resource-efficient, resilient infrastructure;

- SDG 12 (Responsible Consumption and Production) and SDG 13 (Climate Action) – by reducing emissions and material use;
- SDG 14 (Life Below Water) and SDG 15 (Life on Land) by protecting shorelines and habitats from erosion

1.2 Environmental and Resource Efficiency

From decades of research and recent LCAs:

- Geotextiles replace several layers of gravel and sand filters, reducing material use by 70–80%
- They are lightweight, which lowers transport demand, energy use, and CO₂ emissions, and simplifies logistics.
- The reduced need for quarried material helps conserve **non-renewable** resources and natural landscapes.
- For hydraulic works, this leads to 10–50% lower total environmental impacts (including CO₂, energy use, acidification, eutrophication, and particulate matter) compared with conventional solutions

Key LCA comparisons (Frischknecht 2022; de Visser et al. 2022; Ferrara & Jayakrishnan 2024) show:

- **Global Warming Potential reduction:** 40–60% with geotextiles compared to shotcrete or gravel filters.
- Cumulative Energy Demand (CED): up to 50% lower.
- **Sensitivity analysis:** Even when heavier geotextiles (up to 750 g/m²) are used, they remain environmentally superior unless transport distances for natural materials are extremely short

1.3 Service Life and Durability

- Polypropylene (PP) is the dominant polymer (>90% of geotextile use).
- When properly installed and UV-protected, modern PP geotextiles demonstrate.
- Stabilizers such as HALS prevent degradation; field studies in the Azores and the Baltic Sea confirm that weathering and UV are the main degradation risks but can be mitigated through design and covering.
- Biodegradable options (e.g., jute or biopolymers) are being researched for short-lived, low-risk applications, though current European standards (EN 13253–13255) still exclude biodegradable raw materials

2. Microplastics and Environmental Risks

2.1 Potential Release

The report finds **no significant evidence** that geotextiles are a major source of microplastics.

- The largest global sources remain tyre wear, packaging, and agriculture, which in the Netherlands contribute ~800 t/year, compared with only ~3 t/year from construction (of which geosynthetics form a negligible share)
- Field investigations in the Baltic Sea (EI-GEO project, 2017–2022) identified isolated fragments of improperly installed materials, not properly covered or maintained. These cases were linked to installation errors and storm damage, not to material failure

2.2 Scientific Evidence and Standards

- Laboratory and field studies (Scholz et al., 2021; 2024) confirm no harmful leaching or ecotoxicological effects from properly stabilized PP geotextiles.
- Misleading studies suggesting high emission rates (e.g., Bai et al., 2022) were debunked for flawed methodology and unrealistic assumptions (Gustavsson 2022; Fontana 2023; EU 2023)
- Ongoing EU standardization work under CEN TC189/WG7 Project Group
 "Potential Release of Microplastics" is developing a risk matrix covering degradation factors (UV, mechanical, chemical) to identify high-risk use cases

2.3 Key Conclusion

When **correctly designed, installed, and maintained**, geotextiles in hydraulic and erosion control works pose **negligible microplastic risk**.

Observed pollution cases stem from **poor design or lack of maintenance**, not from intrinsic material degradation

3. Economic and Environmental Cost Aspects

3.1 Cost Efficiency

Geotextiles yield major financial advantages:

- Up to 70–80% total cost savings compared to conventional rock or concretebased systems
- Savings arise from **reduced excavation and transport**, smaller construction volumes, and faster installation.
- Case data (de Visser et al., 2022):

- Polymeric geotextile filter = €27,700 MKI;
- Granular closed filter = €46,900 MKI;
- Jute filter = €193,900 MKI (mainly due to short lifespan requiring multiple replacements)

3.2 Environmental Cost Indicator (MKI/ECI) Integration

- The **Dutch MKI** (Milieu Kosten Indicator) translates environmental impact into a monetary value.
- Combined cost–environmental assessments show that PP geotextiles have the lowest overall MKI and lifecycle cost, despite a theoretical (minor) microplastic risk.
- The MKI framework supports circular and climate-neutral infrastructure goals, aligning financial and ecological evaluation criteria

4. Conclusions and Perspectives

Sustainability

Geotextiles significantly **reduce resource use, CO₂ emissions, and energy demand** while promoting **durability, circularity, and sustainable infrastructure** development.

Microplastics

They are **not** a **major pollution source**; emissions occur only from **improperly handled installations**. EU efforts under **CEN TC189/WG7** are establishing harmonized evaluation standards.

Costs and Efficiency

Geotextiles combine **economic savings with ecological benefits**, achieving up to **50% lower environmental impacts** and **70% lower construction costs**.

Policy Outlook

Integrating environmental costs into procurement (via MKI/ECI) and emphasizing proper design and maintenance are key to ensuring **sustainable**, **long-lived erosion control systems**.

Overall Conclusion

The SINTEF study confirms that **geotextiles in erosion control and hydraulic works** are a **sustainable, low-impact, and cost-efficient alternative** to traditional mineral solutions.

They contribute directly to the **UN SDGs**, exhibit **lifetimes beyond 100 years**, and—when properly installed—pose **minimal microplastic risk**.

These findings reinforce geotextiles as a **core enabler of Europe's climate-neutral and circular construction transition**.