

EAM European Association of Geosynthetic product Manufacturers

COMPARATIVE LCA OF GEOSYNTHETICS versus CONVENTIONAL CONSTRUCTION MATERIALS CASE 3: LANDFILL CONSTRUCTION

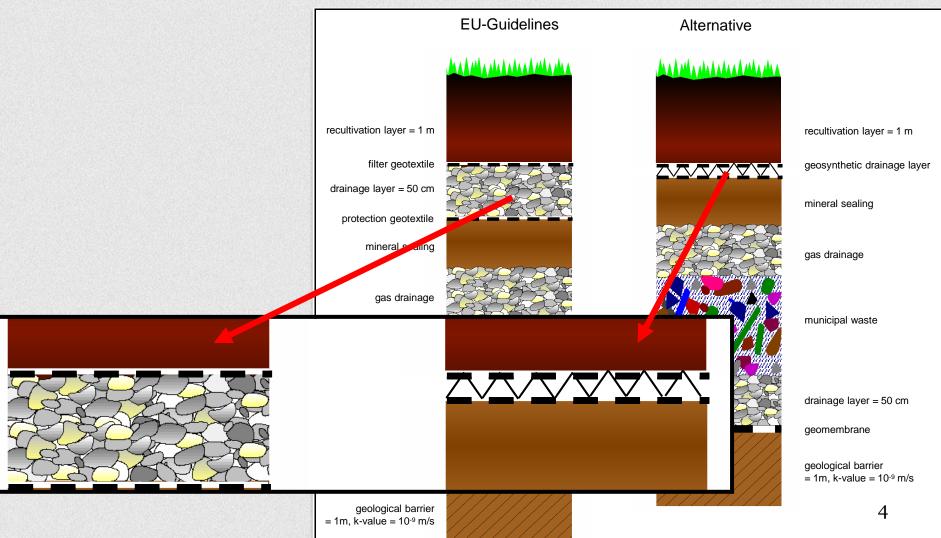
Katja Werth– NAUE GmbH & Co. KG (on behalf of EAGM) Rolf Dieter Böttcher – Colbond bv (on behalf of EAGM)

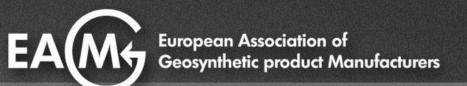
The E.A.G.M. commissioned ETH Zürich and ESU-services Ltd. to quantify the environmental performance of commonly applied construction materials. A comparison was undertaken between:

- conventional materials like concrete, cement, lime or gravel
- geosynthetic materials

A set of Comparative Life Cycle Assessment studies are carried out concentrating on various civil application cases, namely:

- filtration (case 1)
- foundation stabilised road (case 2)
- landfill construction (case 3)
- slope retention retaining structures (case 4)





CHARACTERISATION OF ALTERNATIVES

CHARACTERISATION OF ALTERNATIVES

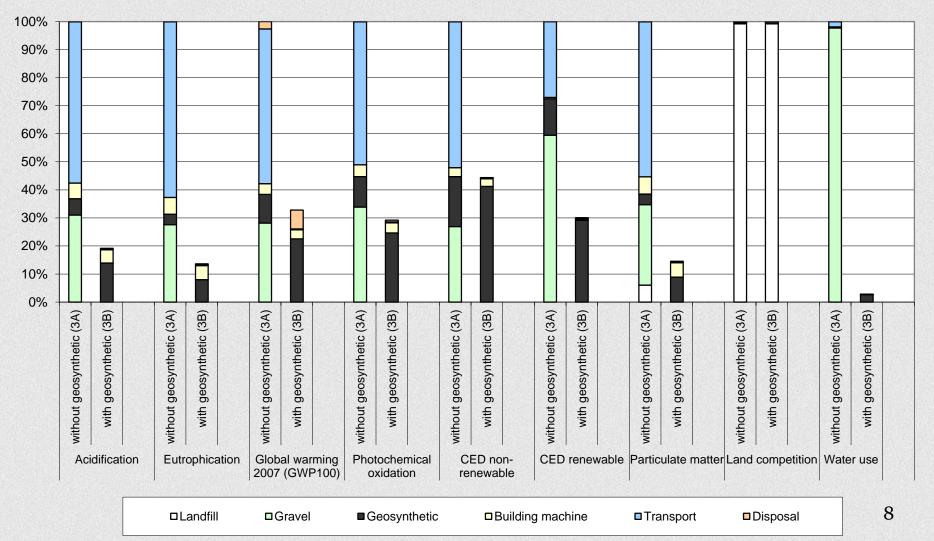
- No protection or filtration geosynthetic are calculated in the comparison
- Gravel with a uniform grain size of 16-32mm and a layer thickness of 50cm is used in case 3A (according to 1999/31/EC).
- In Case 3B the average of 2 types of different geosynthetics are used to represent its performance:
 - drainage nets
 - drainage 3D filament

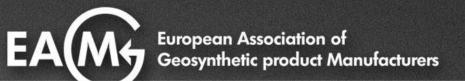
(Data collected from EAGM Members 2010)

- Polypropylene or polyethylene granulates are used as basic material in case 3B
- The average weight of the drainage polymer is 500g/m²
- Estimated life time ≥100 years

INDICATORS INVESTIGATED:

- 1. Cumulative Energy Demand [CED]
- 2. Climate Change [Global Warming Potential, GWP100]
- 3. Photochemical Ozone Formation [also known under "summer smog"],
- 4. Particulate Formation [PM, causes health problems as it reaches the upper part of the airways and lungs when inhaled]
- 5. Acidification [major acidifying substances are NOX, NH3, and SO2]
- 6. Eutrophication [nutrient enrichment of the aquatic environment]
- 7. Land competition
- 8. Water use


Selected key figures referring to the construction of one square meter of a case 3A and case 3B drainage layer with a hydraulic conductivity of at least 1 mm/s


	Unit	Case 3A	Case 3B
Gravel	t/m2	0.90	-
Geosynthetic drainage core	m²/m²	-	1
Diesel used in building machines	MJ/m ²	4.5	3.8
Transport, lorry	tkm/m ²	45.1	0.2
Transport, freight, rail	tkm/m ²	0.1	0.3
Land use	m²/m²	1	1
Particulates, > 10 mm	g/m	6.3	-
Particulates, > 2.5 mm & < 10 mm	g/m	1.7	-

Indicators investigated: Acidification, Eutrophication, Global Warming, Photochemical oxidation, CED non-renewable, CED renewable, Particulate matter, Land competition & Water use

Environmental impacts of the life cycle of 1m² mineral drainage layer (case 3A) and a geosynthetic drainage layer (case 3B)

THIS STUDY SHOWS

The use of geosynthetics leads to:

- lower environmental impacts in all impact categories considered, except land competition which is about the same in both cases
- 220 tons CO2-eq saving on a landfill with an area of 30,000m²